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STABILITY FROM THE BIFURCATION FUNCTION

Jack K. Hale

ABSTRACT

This paper contains an extension to Ck-vector fields
of the classical results of Liapunov on the stability
of an equilibrium point in the critical case of one zero
root. The transformation theory of Liapunov is not

applicable to this case. We exploit fundamental relations

from bifurcation theory.
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In a recent paper, deOliveira and Hale [2]) discussed the
relationship between the bifurcation function obtained by the
method of Liapunov-Schmidt and the flow on the center manifold
for periodic n-dimensional systems for which the linear approxi-
mation has one characteristic multiplier equal to one and the
remaining ones inside the unit circle. The purpose of this
paper is to present a more elementary proof of this result and
also to give an application to stability for autonomous systems
in the critical case of one zero root. This allows one to
extend and simplify the classical results of Liapunov [4] to
the case of'Ck-vector fields. The approach used by Liapunov
cannot be extended to this case since he employs the theory of
transformations to approximate the vector fields by simpler
vector fields.

Consider the n-dimensional vector equation

; 0 0
(1) x = Ax + F(t,x,)2), A= [ ]
0 B

where ) € E, a Banach space, B is an (n-1) x (n-1) matrix
with eigenvalues with negative real parts, F(t,x,\) is con-
tinuous, is Ck. k>1, in x,x, F(t+l,x,2) = F(t,x,2),F(t,0,0) = 0,
aF(t,0,0)/3x = 0. Our objective is to determine the 1-periodic
solutions of (1) in a neighborhood of (x,)) = (0,0) as well as
their stability properties.

The me*.iod of Liapunov-Schmidt is an effective way of deter-

mining the number of 1-periodic solutions of (1). Since A has
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0 as a simple eigenvalue and all other eigenvalues with
negative real parts, this method yields a scalar function
G(a,)) defined and Ck for (a,A) in a neighborhood of
(0,0) €E R x E such that Eq. (1) has a 1l-periodic solution

in a certain neighborhood of (x,A) = (0,0) if and only if
G(a,A\) = 0. Also, there is a prescription for determining

the l-periodic solutions from the zeros of G. The method

of Liapunov-Schmidt can be considered as a reduction principle
- reducing the discussion of the existence of special solutions
of (1) (the l-periodic solutions) to an alternative problem in
lower dimension - namely, to finding the zeros of the scalar
function G(a,)).

There is another reduction principle in di{ferential equa-
tions which determines the behavior of all solutions of (1) in
a neighborhood of (x,\) = 0. This is the center manifold
theorem. If x = (y,2), YER, 2 erR"! in Eq. (1), this
theorem says there is a function h(t,y,\) € Rn’l, defined,
continuous, Ck in y,A» in R x U, where U is a neighbor-
hood of (y,\) = (0,0) € R x E, such that h(t,y,A) = h(t+¢l,y,A)
and the set

def -1
M, = ((t,y,2):y € R, :€R", z = h(t,y,)), t € R,(y,)\) € U}

is an invariant manifold for Eq. (1). Furthermore, this manifold

M, is exponentially asymptotically stable. The properties of
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the solutions of Eq. (1) in a neighborhood of (x,X) = (0,0)
is completely determined by the flow induced on Mx by the

scalar equation

(2) y = f(t,y,h(t,y,)),})

where F = (f,g), fER, g€ R"'!. Any 1-periodic solution of
Eq. (1) near (x,)) = (0,0) is given by x(t) = (y(t),z(t)),
z(t) = h(t,y(t),2), and y(t) a l-periodic solution of (2),
and conversely. Furthermore, the stability properties of y(t)
determine the stability properties of x(t) in the sense that
they are the same except that x(t) always has an additional
(n-1)-dimensional stable manifold.

The principle result proved by deOliveira and Hale [2] is

Theorem 1. Consider the scalar equation

(3) a = G(a,))

where G(a,)) is the bifurcation function obtained by the

method of Liapunov-Schmidt. The zeros of G(a,\) are in one-

to-one correspondence with the l-periodic solutions of Eq. (2)

in a neighborhood of (y,)) = (0,0). Furthermore, the stability

properties of the equilibrium points of (3) are the same as the

stability properties of the l-periodic solutions of (2).
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Proof: Let us indicate a proof which is different from and

simpler than the one in [2]). We first prove it for the

scalar equation (2). For Eq. (2), one can also apply the

method of Liapunov-Schmidt to obtain a scalar bifurcation

G(a,)) in the following way. In a neighborhood of (y,a,X) = (0,0,0),

let y(t,a,A) be the unique 1l-periodic solution of the equation
: 1 :
(4) y(t) = f(t,y(t),h(t,y(r),2)) - fof(S.y(s).h(s.y(S).A).x)ds

1
with ! y = a and define
0

- 1
(s) G(a,2) [of(s.y(s.a.x).h(s.y(s.a.x).x)ds.

The 1-periodic solutions of Eq. (2) in a neighborhood of zero
are in one-to-one correspondence with the zeros of G in a neighbor-

hood of zero. Let us make the transformation of variables
y*™ b:y(t) = y(t,b,))

in Eq. (2). Since y(t,b,0) = b, 3y(t,0,n)/3b = 1, and y(t,b,))
satisfies (4), (5), we have

(6) b = (3y(t,b,A)/3b) 1G(b,2).

For (b,A) in a sufficiently small neighborhood of zero,
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(ay(t,b,x)labfl > 0. This immediately shows that the sta-
bility properties of any l-periodic solution of (6) (which
coincides with the zeros of () is the same as the stability
properties of the corresponding solution of a = 5(a,k). This

proves the theorem for Eq. (2).

To prove the theorem for Eq. (1), we proceed as in [2],
first observing that &(a,X),G(a,A) have the same set of zeros
in a neighborhood of zero. Thus, we need only show that E.G
have the same sign between zeros. Suppose this is not the case.
By a small perturbation in the original Eq. (1), we can suppose

the zeros of both functions are simple. Now replace f in

Eq. (1) by f + €, obtain the new bifurcation G(a,},e) =
G(a,A) + ¢ for (1), obtain the new bifurcation function
G(a,A,e) = G(a,)) * 6(a,)\)e + O(IC'Z) as Je] =+ 0, 8(a,r) >0,
for the corresponding equation on the center manifold. Now
suppose (ay,),) is a simple zero of G(a,)), G(a,\) with
(3G/3a)(5G/8a) < 0 at (ags)g): that is, the functions have
opposite sign in a neighborhood of (ao,ko). The functions
G(a,A\,e),G(a,A,e) have distinct zeros in a neighborhood of
(ao,lo) for € small. But thi; is a contradiction since

they must have the same zeros. This proves the theorem.

Applications of Theorem 1 to general bifurcation theory and

to Hopf bifurcation may be found in (2].




Also, the extension to infinite dimensional systems is dis-
cussed - especially parabolic equations and functional
differential equations.

Let us give another application to the classical problem

of stability in critical cases discussed so thoroughly by
Liapunov !4], Lefschetz (3] and, more recently, by Bibikov (1]
as well as others.

Consider the equation

y = f(y,2)
(7)
z =Bz + gly,z)

with yER.zGR"'l, B an (n-1) x (n-1) matrix whose

eigenvalues have negative real parts, f,g are Ck functions

vanishing together with their first derivatives at (0,0).
The method of Liapunov-Schmidt applied to this equation

yields the bifurcation function
(8) G(a) = f(a,¢(a))
where ¢ is the unique solution of the equation

(9) Bé + g(a,e) = 0

in a neighborhood of (a,¢) = (0,0).
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As immediate consequences of Theorem 1, we have

Corollary 1. If there is an integer q >2 and B8 ¢ 0 such

that
G(a) = Ba® » O(Ialq’l) as |a| - 0

then the solution x = (y,2) of (7) is asymptotically stable

if and only if B < 0, q odd. Otherwise, it is unstable.

This is the classical result of Liapunov. The function
G(a) can be C- and there may never exist a 8,q as in

Corollary 1. Theorem 1 actually implies a more general property.

Corollary 2. The solution (y,z) = (0,0) of (7) is asymptotical-

ly stable if and only if there is an ¢ > 0 such that G(a)a < 0

for 0 < Ja] < €. The solution (y,2) = (0,0) is unstable if

and only if there is an € > 0 such that G(a)a > 0 for either

0 <a<e or -e¢€ <a<0. If there is an ¢ > 0 such that

G(a) = 0 for 0 < |Ja] < €, then the solution (y,z) = (0,0) of

(7) is stable and there is a first integral in a neighborhood

of (0,0).

Proof: Everything is obvious from Theorem 1 except the existence

of the first integral. Suppose G(a) = 0 for |a] < ¢ and let
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z = h(y) be the parametric representation of a center manifold

M at (0,0): M= {(y,z): z = h(y)}. We know that f(y,h(y)) =0
for |yl < €. Also, each equilibrium point (ygsh(yg)) of (7)
Iyol < e, has an (n-1)-dimensional stable manifold S(yo) which
is Ck in Yo+ The curve M and these stable manifolds can be
used as a coordinate system in a neighborhood of (0,0) to obtain

k mapping H: (y,z) = (u,v), where u=0, vs=RBv+ é(u.v).

a C
This latter equation has a first integral V(u,v) = u so that the

original equation has a first integral. This proves the result.

Corollary 3. If there is scalar function H(y,z,w), continuous

for (y,z,w) € R x Rn'l x R"'l such that H(y,z,0) = 0 and
f(y,z) = H(y,z,Bz + g(y,z))

then the zero solution of (1) is stable and there is a first

integral.

Proof: The hypotheses imply G(y) = f(y,é(y)) =0 for y in

a neighborhood of zero and so Corollary 2 applies.

In the case of analytic systems, Bibikov [1] refers to the

situation in Corollary 1 as the algebraic case. For f,g

analytic, the function G(a) is analytic and therefore either

the algebraic case holds or G(a) = 0, which is called the




transcendental case. Corollary 2 says there is a first integral

in the analytic case - another classical result of Liapunov

(see Bibikov [1]). Corollary 3 was also stated by Liapunov

for analytic systems. Thus, we see that the basic results of

Liapunov can be generalized to Ck-vector fields and, in
E addition, everything is based only on the bifurcation function.

This latter remark is the essential improvement in the state-

ment of the results of Liapunov. Some aspects of the proofs

however are similar. Liapunov used his general transformation

theory to put the equation in a form where it is easy to dis-

il ot St - et

cover the center manifold and the flow on the center manifcid.
We use the abstract center manifold theory and properties of
the stable manifold. In addition, a small amount of perturbation é
theory is used in an abstract way to prove the bifurcation g
function determines the stability properties of the solutions.
It is instructive for the reader to check the original
examples given by Liapunov [4] to see how only the bifurcation
function was used to determine stability.
We remark that the same results as above have extensions to
certain evolutionary equations in infinite dimensions; for ‘
example, parabolic systems and functional differential equations.
Finally, we have emphasized stability of the solution
(y,z2) = 0 of (7). If the autonomous system depends on a para-
meter (which often occurs in applications), Theorem 1 may be
applied directly to obtain stability results even at the bifurca- :

- ; tion curves.
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